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Abstract

Penalized regression methods are becoming increasingly popular in genome-wide
association studies (GWAS) for identifying genetic markers associated with disease.
However, standard penalized methods such as the LASSO do not take into account
the possible linkage disequilibrium between adjacent markers. We propose a novel
penalized approach for GWAS using a dense set of single nucleotide polymorphisms
(SNPs). The proposed method uses the minimax concave penalty (MCP) for marker
selection and incorporates linkage disequilibrium (LD) information by penalizing the
difference of the genetic effects at adjacent SNPs with high correlation. A coordinate
descent algorithm is derived to implement the proposed method. This algorithm is
efficient in dealing with a large number of SNPs. A multi-split method is used to cal-
culate the p-values of the selected SNPs for assessing their significance. We refer to the
proposed penalty function as the smoothed MCP and the proposed approach as the
SMCP method. Performance of the proposed SMCP method and its comparison with
a LASSO approach are evaluated through simulation studies, which demonstrate that
the proposed method is more accurate in selecting associated SNPs. Its applicability
to real data is illustrated using data from a study on rheumatoid arthritis.

Keywords: Genetic association, Feature selection, Linkage disequilibrium, Penalized
regression, Single nucleotide polymorphism.

1 Introduction

With the rapid development of modern genotyping technology, genome-wide association

studies (GWAS) have become an important tool for identifying genetic factors underlying

complex traits. From a statistical standpoint, identifying SNPs associated with a trait can

be formulated as a variable selection problem in sparse, high-dimensional models. The
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traditional multivariate regression methods are not directly applicable to GWAS because

the number of SNPs in an association study is usually much larger than the sample size.

The LASSO (least absolute shrinkage and selection operator) provides a computationally

feasible way for variable selection in high-dimensional settings Tibshirani [1996]. Recently,

this approach has been applied to GWAS for selecting associated SNPs Wu et al. [2009]. It

has been shown that the LASSO is selection consistent if and only if the predictors meet the

irrepresentable condition Zhao and Yu [2006]. This condition is stringent and there is no

known mechanism to verify it in GWAS. Zhang and Huang Zhang and Huang [2008] studied

the sparsity and the bias of the LASSO in high-dimensional linear regression models. It is

shown that under reasonable conditions, the LASSO selects a model of the correct order of

dimensionality. However, the LASSO tends to overselect unimportant variables. Therefore,

direct application of the LASSO to GWAS tends to generate findings with high false positive

rates. Another limitation of the LASSO is that, if there is a group of variables among which

the pairwise correlations are high, then the LASSO tends to select only one variable from

the group and does not care which one is selected Zou and Hastie [2005].

Several methods that attempt to improve the performance of the LASSO have been

proposed. The adaptive LASSO Zou [2006] uses adaptive weights on each penalty so that

the oracle properties hold under some mild regularity conditions. In the case that the

number of predictors is much larger than sample size, adaptive weights cannot be initiated

easily. Elastic net method Zou and Hastie [2005] can effectively deal with certain correlation

structures in the predictors by using a combination of ridge and LASSO penalties. Fan and

Li Fan and Li [2001] introduced a smoothly clipped absolute deviation (SCAD) method.

Zhang Zhang [2010] proposed a flexible minmax concave penalty (MCP) which attenuates

the effect of shrinkage that leads to bias. Both the SCAD and MCP belong to the same

family of quadratic spline penalties and both lead to oracle selection results Zhang [2010].
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The MCP has a simpler form and requires weaker conditions for the oracle property. We

refer to Zhang [2010] and Mazumder et al. [2011] for detailed discussion.

However, the existing penalized methods for variable selection do not take into account

the specifics of SNP data. SNPs are naturally ordered along the genome with respect to

their physical positions. In the presence of linkage disequilibrium (LD), adjacent SNPs

are expected to show similar strength of association. Making use of LD information from

adjacent SNPs is highly desirable as it should help to better delineate association signals

while reducing randomness seen in single SNP analysis. Fused LASSO Tibshirani et al. [2005]

is not appropriate for this purpose, since the effect of association for a SNP (as measured

by its regression coefficient) is only identifiable up to its absolute value – a homozygous

genotype can be equivalently coded as either 0 or 2 depending on the choice of the reference

allele.

We propose a new penalized regression method for identifying associated SNPs in GWAS.

The proposed method uses a novel penalty, which we shall refer to as the smoothed minimax

concave penalty, or SMCP, for sparsity and smoothness in absolute values. The SMCP is a

combination of the MCP and a penalty consisting of the squared differences of the absolute

effects of adjacent markers. The MCP promotes sparsity in the model and does automatic

selection of associated SNPs. The penalty for squared differences of the absolute effects

takes into account the natural ordering of SNPs and adaptively incorporates possible LD

information between adjacent SNPs. It explicitly uses correlation between adjacent markers

and penalizes the differences of the genetic effects at adjacent SNPs with high correlation.

We derive a coordinate descent algorithm for implementing the SMCP method. We use

a resampling method for computing p-values of the selected SNPs in order to assess their

significance.

The rest of the paper is organized as follows. Section 2 introduces the proposed SMCP
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method. Section 3 presents a genome-wide screening incorporating the proposed SMCP

method. Section 4 describes a coordinate descent algorithm for estimating model parame-

ters and discusses selection of the values of the tuning parameters and p-value calculation.

Section 5 evaluates the proposed method and a LASSO method using simulated data. Sec-

tion 6 applies the proposed method to a GWAS on rheumatoid arthritis. Finally, Section 7

provides a summary and discusses some related issues.

2 The SMCP method

Let p be the number of SNPs included in the study, and let βj denote the effect of the jth SNP

in a working model that describes the relationship between phenotype and markers. Here we

assume that the SNPs are ordered according to their physical locations on the chromosomes.

Adjacent SNPs in high LD are expected to have similar strength of association with the

phenotype. To adaptively incorporating LD information, we propose the following penalty

that encourages smoothness in |β|s at neighboring SNPs:

λ2
2

p−1∑
j=1

ζj(|βj| − |βj+1|)2, (1)

where the weight ζj is a measure of LD between SNP j and SNP (j+1). This penalty

encourages |βj| and |βj+1| to be similar to an extent inversely proportional to the LD strength

between the two corresponding SNPs. Adjacent SNPs in weak LD are allowed to have larger

difference in their |β|s than if they are in stronger LD. The effect of this penalty is to

encourage smoothness in |β|s for SNPs in strong LD. By using this penalty, we expect a

better delineation of the association pattern in LD blocks that harbor disease variants while

reducing randomness in |β|s in LD blocks that do not. We note that there is no monotone

relationship between ζ and the physical distance between two SNPs. While it is possible

to use other LD measures, we choose ζj to be the absolute value of lag one autocorrelation
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coefficient between the genotype scores of SNP j and SNP (j+1). The values of ζj for

rheumatoid arthritis data used by Genetic Analysis Workshop 16, the data set to be used

in our simulation study and empirical study, are plotted for chromosome 6 (Fig. 1(a)). The

proportion that ζj > 0.5 over non-overlapping 100-SNP windows is also plotted (Fig. 1(b)).

[Figure 1 about here.]

For the purpose of SNP selection, we use the MCP, which is defined as

ρ(t;λ1, γ) = λ1

∫ |t|
0

(1− x/(γλ1))+dx,

where λ1 is a penalty parameter and γ is a regularization parameter that controls the con-

cavity of ρ. Here x+ is the nonnegative part of x, i.e., x+ = x1{x≥0}. The MCP can be easily

understood by considering its derivative, which is

ρ̇(t;λ1, γ) = λ1
(
1− |t|/(γλ1)

)
+

sgn(t),

where sgn(t) = −1, 0, or 1 if t < 0,= 0, or > 0, respectively. As |t| increases from 0,

MCP begins by applying the same rate of penalization as the LASSO, but continuously

relaxes that penalization until |t| > γλ1, a condition under which the rate of penalization

drops to 0. It provides a continuum of penalties where the LASSO penalty corresponds to

γ = ∞ and the hard-thresholding penalty corresponds to γ → 1+. We note that other

penalties, such as the LASSO penalty or SCAD penalty, can also be used to replace MCP.

We choose MCP because it possesses all the basic desired properties of a penalty function

and is computationally simple Mazumder et al. [2011], Zhang [2010].

Given the parameter vector β = (β1, . . . , βp)
′ and a loss function g(β) based on a working

model for the relationship between the phenotype and markers, the SMCP in a working model

can be expressed as minimizing the criterion

Ln(β) = g(β) +

p∑
j=1

ρ(|βj|;λ1, γ) +
λ2
2

p−1∑
j=1

ζj(|βj| − |βj+1|)2. (2)
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We minimize this objective function with respect to β, while using a bisection method to

determine the regularization parameters (λ1, λ2). SNPs corresponding to β̂j 6= 0 are selected

as being potentially associated with disease. These selected SNPs will be subject to further

analysis using a multi-split sampling method to determine their statistical significance, as

described later.

3 Genome-wide screening incorporating LD

A basic method for GWAS is to conduct genome-wide screening of a large number of dense

SNPs individually and look for those with significant association with phenotype. Although

several important considerations, such as adjustment for multiple comparisons and possible

population stratification, need to be taken into account in the analysis, the essence of the

existing genome-wide screening approach is single-marker based analysis without considering

the structure of SNP data. In particular, the possible LD between two adjacent SNPs are

not incorporated in the analysis.

Our proposed SMCP method can be used for screening a dense set of SNPs incorporating

LD information in a natural way. To be specific, here we consider the standard case-control

design for identifying SNPs that potentially associated with disease. Let the phenotype be

scored as 1 for cases and −1 for controls. Let nj be the number of subjects whose genotypes

are non-missing at SNP j. The standardized phenotype of the ith subject with non-missing

genotype at SNP j is denoted by yij. The genotype at SNP j is scored as 0, 1, or 2 depending

on the number of copies of a reference allele in a subject. Let xij denote the standardized

genotype score satisfying
∑

i xij = 0 and
∑nj

i=1 x
2
ij = nj.

Consider the penalized criterion

Ln(β) =
1

2

p∑
j=1

1

nj

nj∑
i=1

(yij − xijβj)2 +

p∑
j=1

ρ(|βj|;λ1, γ)
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+
λ2
2

p−1∑
j=1

ζj(|βj| − |βj+1|)2. (3)

Here the loss function is

g(β) =
1

2

p∑
j=1

1

nj

nj∑
i=1

(yij − xijβj)2. (4)

We note that switching the reference allele used for scoring the genotypes changes the sign

of βj but |βj| remains the same. It may be counter-intuitive to use a quadratic loss in (4) for

case-control designs. We now show that this is appropriate. Regardless how the phenotype

is scored, the least squares regression slope of the phenotype over the genotype score at SNP

j (i.e., a regular single SNP analysis) equals

nj∑
i=1

yijxij/

nj∑
i=1

x2ij = 2(p̂1j − p̂2j)/φj(1− φj),

where φj is the proportion of cases out of total subjects computed from the subjects with

non-missing genotype and p̂1j and p̂2j are allele frequencies of the SNP j in cases and controls,

respectively. This shows that the βj in the squared loss function (4) can be interpreted as

the effect size of SNP j. In the classification literature, quadratic loss has also been used for

indicator response variables Hastie et al. [2009].

An alternative loss function for binary phenotype would be the sum of negative marginal

log-likelihood based on a working logistic regression model. We have found that the selection

results using this loss function are in general similar to those based on (4). In addition, the

computational implementation of the coordinate descent algorithm described in the next

subsection using the loss function (4) is much more stable and efficient and can easily handle

tens of thousands SNPs.
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4 Computation

In this section, we first present a coordinate descent algorithm for the proposed SMCP

method. Then we discuss methods of selecting tuning parameters and evaluating p-values

for the selected SNPs.

4.1 Coordinate Descent Algorithm

In this part, we derive a coordinate descent algorithm for computing the solution to (3).

This algorithm was originally proposed for criterions with convex penalties such as LASSO

Knight and Fu [2000], Friedman et al. [2010], Wu and Lange [2007]. It has been proposed

to calculate nonconvex penalized regression estimates Mazumder et al. [2011], Breheny and

Huang [2011]. This algorithm optimizes a target function with respect to one parameter

at a time, iteratively cycling through all parameters until convergence is reached. It is

particularly suitable for problems such as the current one that have a simple closed form

solution in a single dimension but lack one in higher dimensions.

We wish to minimize the objective function Ln(β) in (3) with respect to βj while keeping

all other βk, k 6= j, fixed at their current estimates. Thus only the terms involving βj in Ln

matter. That is, this problem is equivalent to minimizing R(βj) defined as

R(βj) =
1

2nj

nj∑
i=1

(yij − xijβj)2 + ρ(|βj|;λ1, γ)

+
1

2
λ2[ζj(|βj| − |β̃j+1|)2 + ζj−1(|β̃j−1| − |βj|)2]

= C + ajβ
2
j + bjβj + cj|βj|, j = 2, . . . , p− 1,

where C is a term free of βj, β̃j+1 and β̃j−1 are current estimates of βj+1 and βj−1, respectively,

and aj, bj, and cj are determined as follows:
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• For |βj| < γλ1,

aj =
1

2

(
1

nj

nj∑
i=1

x2ij + λ2(ζj−1 + ζj)−
1

γ

)
,

bj = − 1

nj

nj∑
i=1

xijyij,

and

cj = λ1 − λ2(|β̃j+1|ζj + |β̃j−1|ζj−1). (5)

• For |βj| ≥ γλ1,

aj =
1

2

(
1

nj

nj∑
i=1

x2ij + λ2(ζj−1 + ζj)

)
,

cj = −λ2(|β̃j+1|ζj + |β̃j−1|ζj−1), (6)

while bj remains the same as in the previous situation.

Note that function R(βj) is defined for j 6= 1, p. It can be defined for j = 1 by setting

β̃j−1 = 0 and for j = p by setting β̃j+1 = 0 in the above two situations.

Minimizing R(βj) with respect to βj is equivalent to minimizing ajβ
2
j + bjβj + cj|βj|, or

equivalently,

aj

(
βj +

bj
2aj

)2

+ cj|βj|. (7)

The first term is convex in βj if aj > 0. In the case |βj| ≥ γλ1, aj > 0 is trivially true. In

the case |βj| < γλ1, aj > 0 holds when γ > 1.

Let β̂j denote the minimizer of R(βj). It has the following explicit expression:

β̂j = −sign(bj) ·
(|bj| − cj)+

2aj
. (8)

This is because if cj > 0, minimizing (7) becomes a regular one dimensional LASSO problem.

β̂j is the soft-threshold operator. If cj < 0, it can be shown that β̂j and bj are of opposite
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sign. If bj ≥ 0, expression (7) becomes

aj

(
βj +

bj
2aj

)2

− cjβj.

Hence β̂j = −(bj − cj)/2aj < 0. If bj < 0, then |β̂j| = β̂j and β̂j = −(bj + cj)/2aj > 0. In

summary, expression (8) holds in all situations.

The novel penalty (1) affects both aj and cj. Both 2aj and cj are linear in λ2. As λ2

increases, 2aj increases at rate ∂(2aj)/∂λ2 = ζj−1 + ζj while cj decreases at rate ∂cj/∂λ2 =

|β̃j+1|ζj + |β̃j−1|ζj−1. In the case of |bj|− cj ≥ 0, these are the rates of change for the denom-

inator and the numerator of |β̂j| = (|bj| − cj)+/(2aj). The change in |β̂j| more complicated

as it involves the intercepts of its numerator and denominator. In terms of |β̃j+1| and |β̃j−1|,

β̂j is larger when these two values are larger. Since bj does not depend on λ2, more SNPs

will satisfy |bj| − cj ≥ 0 and thus be selected as λ2 increases.

We note that aj and bj do not depend on any βj. They only need to be computed once

for each SNP. Only cj needs to be updated after all βjs are updated. In the special case

of λ2 = 0, the SMCP method becomes the MCP method. Even cj no longer depends on

β̃j−1 and β̃j+1: cj = λ1 if |βj| < γλ1 and cj = 0 otherwise. Expression (8) gives the explicit

solution for βj.

Generally, an iterative algorithm is required to estimate these parameters. Let β̃
(0)

=

(β̃
(0)
1 , . . . , β̃

(0)
p )′ be the initial value of the estimate of β. The proposed coordinate descent

algorithm proceeds as follows:

1. Compute aj and bj for j = 1, . . . , p.

2. Set s = 0.

3. For j = 1, . . . , p,

(a) Compute cj according to expressions (5) or (6).

11



(b) Update β̃
(s+1)
j according to expression (8).

4. Update s← s+ 1.

5. Repeat steps (3) and (4) until the estimate of β converges.

In practice, the initial values β
(0)
j , j = 1, . . . , p are set to 0. Each βj is then updated

in turn using the coordinate descent algorithm described above. One iteration completes

when all βjs are updated. In our experience, convergence is typically reached after about 30

iterations for the SMCP method.

The convergence of this algorithm follows from Theorem 4.1(c) of Tseng [2001]. This

can be shown as follows. The objective function of SGL can be written as f(β) = f0(β) +∑J
j=1 fj(βj) where

f0(β) =
1

2

p∑
j=1

1

nj

nj∑
i=1

(yij − xijβj)2 +
λ2
2

p−1∑
j=1

ζj(|βj| − |βj+1|)2,

and fj(βj) = ρ(|βj|;λ1, γ). Since f is regular in the sense of (5) in Tseng (2001) and∑J
j=1 fj(βj) is separable , the GCD solutions converge to a coordinatewise minimum point

of f , which is also a stationary point of f .

For now, the property of the second penalty is discussed. We assume that currently, λ1

and λ2 are fixed and we want to solve the objective function (2). Suppose that in the most

recent step (s − 1), βj−1 was updated and compare the value of estimates under adjacent

steps, δ = |β̃(s)
j−1|−|β̃

(s−1)
j−1 |.We further assume that at the most recent step (s−1), only β̃

(s−1)
j−1

is non-zero and δ is usually positive. We now go into the step s to update βj.

• If corr(xj, xj−1) > 0, then ζj−1 = corr(xj, xj−1). We have c
(s)
j = c

(s−1)
j − λ2δζj−1. Note

that c
(s)
j < c

(s−1)
j , since ζj−1 > 0. From expressions(8), we know that β

(s)
j will be non-

zero if cj is less than |bj|. One can see that with stronger correlation (i.e. ζj−1 is larger)
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and/or λ2 is larger, c
(s)
j is smaller. Consequently, β̃

(s)
j is more likely to be non-zero.

The sign of β̃j is also positive if it is not zero. It makes sense that the correlation

between (j − 1)th and jth predictors is assumed to be positive.

• It is similar when corr(xj, xj−1) < 0.

Thus, incorporating the second penalty increases the chance that adjacent SNPs with

high correlation to be selected together.

4.2 Tuning parameter selection

Selecting appropriate values for tuning parameters is important. It affects not only the

number of selected variables but also the estimates of model parameters and the selection

consistency. There are various methods that can be applied, which include AIC Akaike

[1974], BIC Schwarz [1978], Chen and Chen [2008], cross-validation and generalized cross-

validation. However, they are all based upon the the performance of prediction error. In

GWAS, disease markers may not be in the set of SNP markers. Practically it is rare that

disease markers are part of SNPs data, which consequently results in non-true model for

SNPs data. Hence, the methods mentioned above may be inadequate in GWAS. Wu et

al. Wu et al. [2009] used a predetermined number of predictors to select the tuning parameter

and implement a combination of bracketing and bisection to search for the optimal tuning

parameter. We adopt Wu et al. [2009] method to select tuning parameters. For this purpose,

tuning parameters λ1 and λ2 are re-parameterized through τ=λ1+λ2 and η=λ1/τ . The value

of η is fixed beforehand. When η = 1, the SMCP method becomes the MCP method.

The optimal value of τ that selects the predetermined number of predictors is determined

through bisection as follows. Let r(τ) denote the number of predictors selected under τ . Let

τmax be the smallest value for which all coefficients are 0. τmax is the upper bound for τ . From
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(5), τmax = maxj |
∑nj

i=1 xijyij|/(njη). To avoid undefined saturated linear models, τ can not

be 0 or close to 0. Its lower bound, denoted by τmin, is set at τmin = ετmax for preselected

ε. Setting ε = 0.1 seems to work well with the SMCP method. Initially, we set τl = τmin

and τu = τmax. If r(τu) < s < r(τl), then we employ bisection. This involves testing the

midpoint τm = 1
2
(τl + τu). If r(τm) < s, we replace τu by τm. If r(τm) > s, we replace τl by

τm. This process repeats until r(τm) = s. From simulation study, we find that regularization

parameter γ also has an important impact on the analysis. Based on our experience, γ = 6

is a reasonable choice for the SMCP method.

4.3 P -values for the selected SNPs

The use of p-value is a traditional way to evaluate the significance of estimates. However,

there are no straightforward ways to compute standard error of penalized linear regression

estimates. Wu et al. Wu et al. [2009] proposed a leave-one-out approach for computing p-

values by assessing the correlations among the selected SNPs in the reduced model. We use

the multi-split method proposed by Meinshausen et al. [2009] to obtain reproducible p-values.

This is a simulation-based method that automatically adjusts for multiple comparisons.

In each iteration, the multi-split method proceeds as follows:

1. Randomly split the data into two disjoint sets of equal size: Din and Dout. The

case:control ratio in each set is the same as in the original data.

2. Fit the SMCP method with data in Din. Denote the set of selected SNPs by S.

3. Assign a p-value P̃j to SNP j in the following way:

(a) If SNP j is in set S, set P̃j to be its p-value on Dout in the regular linear

regression where SNP j is the only predictor.
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(b) If SNP j is not in set S, set P̃j = 1.

4. Define adjusted p-value by Pj = min{P̃j|S|, 1}, j = 1, . . . , p, where |S| is the size

of set S.

This procedure is repeated B times for each SNP. Let P
(b)
j denote the adjusted p-value for

SNP j in the bth iteration. For π ∈ (0, 1), let qπ be the π-quantile on {P (b)
j /π; b = 1, . . . , B}.

Define Q̃j(π) = min{1, qπ}. Meinshausen et al. [2009] proved that Q̃j(π) is an asymptotically

correct p-value, adjusted for multiplicity. They also proposed an adaptive version that selects

a suitable value of quantile based on the data:

Qj = min{1, (1− log π0) inf
π∈(π0,1)

Q̃j(π)},

where π0 is chosen to be 0.05. It was shown that Qj, j = 1, . . . , p, can be used for both

FWER (family-wise error rate) and FDR control Meinshausen et al. [2009].

5 Simulation studies

To make the LD structure as realistic as possible, genotypes are obtained from a rheumatoid

arthritis (RA) study provided by the Genetic Analysis Workshop (GAW) 16. This study

involves 2062 individuals. Four hundred of them are randomly chosen. Five thousand SNPs

are selected from chromosome 6. For individual i, its phenotype yi is generated as follows:

yi = x′iβ + εi, i = 1, . . . , 400,

where xi (a vector of length 5000) represents the genotype data of individual i, β is the vector

of genetic effect whose elements are all 0 except that (β2287, . . . , β2298) = (0.1, 0.2,−0.1, 0.2, 1,

−0.1,−1, 0.1,−1, 0.1,−0.6, 0.2) and (β2300, . . . , β2318) = (0.1,−0.6, 0.2, 0.3,−0.1, 0.3, 0.4,−1.2,

0.1, 0.3,−0.7, 0.1, 1, 0.2,−0.4, 0.1, 0.5,−0.2, 0.1). εi is the residual sampled from a normal
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distribution with mean 0 and standard deviation 1.5. The loss function g(β) is given in

expression (4).

To evaluate the performance of SMCP, we use false discovery rate (FDR) and false

negative rate (FNR) which are defined as follows. Let β̂j denote the estimated value of βj,

FDR =
# of SNPs with β̂j 6= 0 but βj = 0

# of SNPs with β̂ 6= 0

and

FNR =
# of SNPs with β̂j = 0 but βj 6= 0

# of SNPs with β 6= 0
.

[Table 1 about here.]

The mean and the standard deviation of the number of true positives, FDR and FNR for

various values of η for the SMCP method and a LASSO method over 100 replications are

reported in Table 1. In each replication, 50 SNPs are selected. It can be seen that for different

value of η, FDR and FNR change in the same direction, since the number of the selected

SNPs is fixed. As the number of true positives increases, the number of false negatives and

the number of false positives decrease. Overall, the SMCP method outperforms the LASSO

in terms of true positives and FDR.

[Table 2 about here.]

To investigate further the performance of the SMCP method and the LASSO method, we

look into a particular simulated data set. The 50 SNPs selected by the SMCP method and

their p-values obtained using the multi-split method are reported in Table 2. It is apparent

that the number of true positives is much higher for the SMCP method than for the LASSO

method. SMCP selects 25 out of 31 true disease associated SNPs while LASSO selects 21.

Note that multi-split method can effectively assign p-values for the selected SNPs: All the

non-disease associated SNPs are insignificant for the SMCP method. In conparison, two

SNPs (SNP 2320 and SNP 2321) are significant for the LASSO method.
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6 Application to Rheumatoid Arthritis Data

Rheumatoid arthritis (RA) is a complex human disorder with a prevalence ranging from

around 0.8% in Caucasians to 10% in some native American groups Amos et al. [2009]. Its

risk is generally higher in females than in males. Some studies have identified smoking as a

risk factor. Genetic factors underlying RA have been mapped to the HLA region on region

6p21 Newton et al. [2004], PTPN22 locus at 1p13 Begovich et al. [2004], and the CTLA4

locus at 2q33 Plenge et al. [2005]. There are some other loci reported. These loci are at 6q

(TNFAIP3), 9p13 (CCL21), 10p15 (PRKCQ), and 20q13 (CD40) and seem to be of weaker

effects Amos et al. [2009].

GAW 16 RA data is from the North American Rheumatoid Arthritis Consortium (NARAC).

It is the initial batch of whole genome association data for the NARAC cases (N=868) and

controls (N=1194) after removing duplicated and contaminated samples. The total sample

size is 2062. After quality control and removing SNPs with low minor allele frequency, there

are 475672 SNPs over 22 autosomes, of which 31670 are on chromosome 6.

The SNPs on the whole genome are analyzed simultaneously. By using different numbers

for predetermined number of SNPs, we found that 800 SNPs along the genome are appro-

priate for the GAW 16 RA dataset. For the SMCP method, the optimal value for tuning

parameter τ corresponding to this setting is 1.861 with η = 0.05. p-values of the selected

SNPs are computed using multi-split method. The majority of the SNPs (539 out of 800)

selected by the SMCP method are on chromosome 6, 293 of which are significant at signif-

icance level 0.05. The plot of − log10(p-value) for the selected SNPs against their physical

positions is shown in Fig. 2(a) for chromosome 6.

For the LASSO method (i.e., η = 1 and γ = ∞), the same procedure is implemented

to select 800 SNPs across the genome. The optimal value for tuning parameter τ is 0.091.
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There are 537 SNPs selected on chromosome 6 and 280 of them are significant with multi-

split p-value less than 0.05. The plot of − log10(p-value) for chromosome 6 is shown in Fig.

2(b).

We also analyzed the data using the MCP method (i.e., η = 1). It selects the same

set of SNPs as the LASSO method. The difference of the LASSO and the MCP lies in the

magnitude of estimates, since the MCP is unbiased under proper choice of γ but the LASSO

is always biased. Two sets of SNPs selected by the SMCP and the LASSO, respectively,

on chromosome 6 are both in the region of HLA-DRB1 gene that has been found to be

associated with RA Newton et al. [2004].

There are SNPs on other chromosomes that are significant or close to be significant (Ta-

ble 3). Particularly, association to rheumatoid arthritis at SNP rs2476601 in gene PTPN22

has been reported previously Begovich et al. [2004]. Other noteworthy SNPs include SNP

rs512244 in RAB28 region, 4 SNPs in TRAF1 region, SNP rs12926841 in CA5A region,

SNP rs3213728 in RNF126P1 region, and SNP rs1182531 in PHACTR3 region. On chromo-

some 9, 4 SNPs in the region of TRAF1 gene are identified by the SMCP method and the

LASSO method. The estimates of βs obtained from SMCP, MCP, LASSO and the regular

single-SNP linear regression analysis are presented in Fig. 3. One can see from Fig. 3, the

MCP method produce larger estimates than the LASSO method, but the estimates from the

SMCP method are smaller than those from the LASSO. This is caused by the (side) shrink-

age effect of the proposed smoothing penalty. In terms of model selection, SMCP tends to

select more adjacent SNPs that are in high LD.

[Figure 2 about here.]

[Figure 3 about here.]

[Table 3 about here.]
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7 Discussion

Penalized method is a modern variable selection approach developed to handle “large p,

small n” problems. Application of this approach to GWAS is highly anticipated. Compared

to traditional GWAS where each SNP is analyzed one at a time, penalized method is able

to handle a collection of SNPs at the same time. We have proposed a novel SMCP penalty

and introduced a penalized regression method suited to GWAS. A salient feature of this

method is that it takes into account the LD among SNPs in order to reduce the randomness

often seen in the traditional one-SNP-at-a-time analysis. We developed a coordinate descent

algorithm to implement the proposed SMCP method. Also, we applied a multi-split method

to compute p-values which can be used to assess the significance of selected SNPs.

The proposed SMCP method is different from the fused LASSO. The objective function

for fused LASSO can be written

g(β) + λ1

p∑
j=1

|βj|+ λ2

p−1∑
j=1

|βj+1 − βj|.

One apparent difference between SMCP and fused LASSO is in the second penalty. SMCP

uses a L2 penalty on the absolute difference which makes soft smoothing. In comparison

fused LASSO uses L1 for the smoothing penalty. Hence, it will put adjacent parameters

to be exactly the same. Second, SMCP is not affected by the choice of reference allele for

genotype scoring. Third, SMCP explicitly incorporate a measure of LD of adjacent SNPs to

only encourage smoothness of the effects of those with high LD. This feature of the penalty

is particularly suitable for GWAS. Fourth, SMCP is computationally efficient as it has an

explicit solution when updating βj. In comparison, no such explicit solution exists for fused

LASSO. Its computation is not as efficient as SMCP even using the method proposed by

Friedman et al. [2007].

A thorny issue in handling large number of SNPs simultaneously is computation. We used
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several measures to tackle this issue. We introduced explicit expressions for implementing the

coordinate descent algorithm. This algorithm is stable and efficient in our simulation studies

and data example. For a dichotomous phenotype, we showed that a marginal quadratic loss

function yields correct estimate of the effect of a SNP. Two important advantages in using

the marginal loss (4) instead of a joint loss are its convenience in computing over genome

and handling missing genotypes, a phenomenon common in high-throughput genotype data.

As the expression (5) indicates, only cj needs to be updated for each iteration. Thus, there is

no need to read all the data on 22 chromosomes in a computer. The inner products between

standardized phenotypes and genotypes are all needed. It makes computing for all SNPs over

genome possible. Second, joint loss function does not allow any missing genotypes. Missing

genotypes have to be imputed upfront, incurring extra computation time and uncertainty in

imputed genotypes. In contrast, the marginal loss function (4) is not impeded by missing

genotypes.

Compared with the LASSO, the proposed SMCP method is able to incorporate the

consecutive absolute difference to the penalty. Simulation studies show that the SMCP

method is superior to LASSO in the context of GWAS in terms of model size and false

negative rate.

We have focused on the case of a dichotomous phenotype in GWAS. The basic idea of

our method can be applied to the analysis of quantitative traits, based on a linear regres-

sion model and a least squares loss function. Furthermore, covariates and environmental

factors, including those derived from principal components analysis based on marker data

for adjusting population stratification, can be incorporated in the SMCP analysis. Specifi-

cally, we can consider a loss function that includes the effects of the SNPs and the covariate

effects based on an appropriate working regression model, then use the SMCP penalty on

the coefficients of the SNPs. The coordinate descent algorithm for the SMCP method and
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the multi-split method for assessing statistical significance can be used in such settings with

some modifications.
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(a) Absolute lag-one autocorrelation ζj

(b) Absolute lag-one autocorrelation coefficients larger than
0.5 averaged within non-overlapping 100-SNPs windows.

Figure 1: Plots of absolute lag-one autocorrelation ζj on Chromosome 6 from Genetic Anal-
ysis Workshop 16 Rheumatoid Arthritis data.
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(a) SMCP (b) LASSO

Figure 2: Plot of − log10(p-value) for SNPs on chromosome 6 selected by (a) the SMCP
method and (b) the LASSO method for the rheumatoid arthritis data. These p-values are
generated using the multi-split method. The horizontal line corresponds to significance level
0.05.
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(a) SMCP

(b) MCP

(c) LASSO

(d) Regular Single-SNP Linear Regression

Figure 3: Genome-wide plot of |β| estimates.27



Table 1: Mean and standard error (in parentheses) of the number of true positive, false
discovery rate (FDR) and false negative rate (FNR) over 100 simulation replications. There
are 31 associated SNPs.

Method η True Positive FDR FNR
SMCP 0.05 29.12(0.78) 0.418(0.016) 0.061(0.025)

0.06 28.75(0.87) 0.425(0.017) 0.073(0.028)
0.08 28.24(0.81) 0.435(0.016) 0.089(0.026)
0.1 27.87(0.75) 0.443(0.015) 0.101(0.024)
0.2 27.02(0.67) 0.460(0.013) 0.128(0.021)
0.3 26.14(0.45) 0.477(0.009) 0.157(0.015)
0.4 25.97(0.36) 0.481(0.007) 0.162(0.012)
0.5 25.71(0.61) 0.486(0.012) 0.171(0.020)
0.6 25.42(0.61) 0.492(0.012) 0.180(0.020)
0.7 25.15(0.56) 0.497(0.011) 0.189(0.018)
0.8 24.82(0.55) 0.504(0.012) 0.199(0.018)
0.9 24.66(0.65) 0.507(0.013) 0.205(0.021)
1 24.20(0.84) 0.516(0.017) 0.219(0.027)

LASSO — 24.31(0.83) 0.514(0.016) 0.216(0.027)
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Table 2: List of SNPs selected by the SMCP and the LASSO method for a simulated data
set. Recall that the 31 disease-associated SNPs are 2287 – 2298 and 2300 – 2318.

SMCP LASSO Regression

SNP |β̂| p-value∗ |β̂| p-value∗ |β̂| p-value∗∗

2110 -0.042 1 -0.944 4.4e-04
2112 0.042 1 0.944 4.4e-04
2118 -0.001 1 -0.077 1 -0.925 2.5e-04
2120 0.002 1 0.071 1 0.920 2.7e-04
2181 -0.002 1 -0.080 1 -1.037 2.7e-04
2240 0.045 1 0.241 1 1.103 1.6e-05
2241 0.059 1 0.251 1 1.175 1.8e-05
2242 0.046 1 0.158 1 1.103 8.6e-05
2247 -0.010 1 -0.101 1 -0.941 1.7e-04
2269 -0.059 1 -0.481 1 -1.627 1.6e-06
2270 0.034 1 1.136 0.002
2272 -0.003 1 -0.089 1 -0.979 2.2e-04
2279 -0.019 1 -0.181 1 -1.506 1.3e-04
2281 -0.037 1 -1.145 5.2e-04
2284 -0.037 1 -1.310 5.5e-04
2286 -0.167 1 -0.163 1 -1.165 9.1e-05
2287 0.621 0.006 0.816 0.008 1.642 9.5e-12
2288 0.618 0.006 0.812 0.008 1.640 1.2e-11
2289 -0.896 0.324 -0.890 0.191 -2.223 1.5e-08
2290 0.467 0.002 1.040 5.1e-04 1.884 1.2e-14
2291 0.068 1 0.569 0.383
2293 0.108 0.012 0.808 0.003 1.625 9.1e-12
2294 0.083 1 0.815 0.002
2295 -0.061 0.660 -0.413 0.405 -1.299 7.0e-07
2299 -0.132 1 -0.079 0.815
2300 0.580 0.003 1.004 0.002 1.836 2.6e-14
2301 -0.782 0.003 -1.084 0.015 -2.086 8.5e-13
2302 0.687 2.7e-04 1.205 6.3e-05 2.039 1.7e-17
2303 1.221 1 0.722 1.9e-01
2304 -0.856 0.001 -1.089 1.92e-04 -1.933 2.3e-15
2305 -0.892 8.2e-06 -1.395 1.19e-05 -2.239 1.2e-20
2306 0.824 0.030 0.724 0.014 1.527 8.1e-11
2307 -0.914 0.159 -0.684 0.203 -1.709 1.5e-08
2308 0.740 1 0.429 0.705 1.328 5.7e-07
2309 0.738 1.1e-04 1.321 1.51e-05 2.182 8.3e-19
2310 -0.910 0.252 -0.853 0.133 -2.139 1.6e-08
2311 0.477 1 0.1554 0.642
2312 0.717 9.4e-04 1.390 6.30e-05 2.412 2.6e-16
2313 1.029 1 0.036 1 1.525 5.8e-04
2314 -0.762 0.019 -0.916 0.004 -1.776 1.3e-12
2315 0.786 0.019 0.916 0.004 1.776 1.3e-12
2316 -0.831 0.006 -0.960 0.006 -1.853 9.8e-13
2317 -0.757 0.251 -0.458 0.161 -1.285 1.4e-07
2318 0.986 0.001 1.393 1.03e-04 2.442 7.0e-16
2319 9.3e-05 1 0.348 0.198
2320 0.399 0.073 0.928 0.014 2.031 3.2e-10
2321 -0.388 0.066 -0.911 0.017 -2.016 4.9e-10
2332 -0.010 1 -0.133 1 -1.046 1.2e-04
2337 -0.049 1 -0.439 1 -1.733 6.1e-06
2343 0.007 1 0.133 1 1.009 1.1e-04
2346 -0.033 1 -0.310 1 -1.414 1.6e-05
2360 -0.015 1 -1.052 6.6e-04
2363 -0.020 1 -0.273 1 -1.127 8.4e-06
2371 -3.2e-04 1 -0.059 1 -0.916 3.3e-04
2772 0.035 1 0.872 4.6e-04
4421 -0.001 1 -0.077 1 -1.109 3.0e-04
4628 -4.15e-04 1 -1.013 7.8e-04
∗ Computed using the multi-split method.
∗∗ Single SNP analysis, not corrected for multiple testing.
∗∗∗ Empty cells stand for SNPs that are not identified from the model
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Table 3: Significant SNPs (p-value < 0.05) selected by the SMCP method on chromosomes
other than chromosome 6.

SMCP LASSO

Gene Chr Position SNP name Estimates p-value∗ Estimates p-value∗

PTPN22 1 114089610 rs2476601 -0.026 6e-05 -0.061 2e-05
RAB28 4 12775151 rs512244 0.019 0.024 0.033 0.021
TRAF1 9 120720054 rs1953126 -0.021 0.025 -0.031 0.053
TRAF1 9 120732452 rs881375 -0.030 0.014 -0.033 0.016
TRAF1 9 120769793 rs3761847 0.029 0.014 0.033 0.027
TRAF1 9 120785936 rs2900180 -0.019 0.008 -0.037 0.006
CA5A 16 86505516 rs12926841 -0.031 0.002 -0.042 0.002

RNF126P1 17 52478747 rs3213728 0.046 8e-06 0.066 1e-06
PHACTR3 20 57826397 rs1182531 0.018 0.025 0.032 0.021
∗ Computed using the multi-split method.
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